
.,,,. - . JI_

Naval Research Laboratory
Washington, DC 20375.5000

NRL Report 9299

InterFIS: A Natural Language Interface
00 to the Fault Isolation Shell

D. PERZANOWSKI AND B. POTTER

0 Navy Center for Applied Research in Artificial Intelligence
MInformation Technology Division

I

December 31, 1990

DTIC

S ELECTE
JAN 3 01991

E

Approved for public release; distribution unlimited.

91 1 30 049

1'orrfr ApprOveor

REPORT DOCUMENTATION PAGE OMB No 0704-0188

Pubfic reporting burden tor th-s 10o"ect-On of rntornaton 's estmnated to a.eraqe I hour Ier resp onse Coiding the trmE reviewng ntructOns searching e.-tng data sour(e
gathering and maintainng the data ne .ded. and comoietng and reuennq the cOllection ot ,ntorcratOn Send comments reg arding this butden estimate or ant other aspe(t of this

collect on ot ,ntof mat On ,ncuding suggesttons for redu ng thsi burden to Wash,ngton HeadQuarter% Services Directorate for information Operations and Reports. 12tr Jefferson
'a9is Highmay. Suite 204 Arhngton VO 22202-4302 and to the Otfite 0f Management and Budget Papetnwort Reductlon PrOect(0 04-0188). Washington. OC 20 03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Decembr 31, 1990 Oct. 1988-May 1990

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

InterFIS: A Natural Language Interface
to the Fault Isolation Shell PE - 62234N

6. AU.iOR(S) WU - 180-313

Perzanowski, Dennis and Potter. Brian

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington. DC 20375-5000 NRL Report 9299

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release: distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This report describes InterFIS, a syntactically based natural language interface to a model-
based expert system, FIS (Fault Isolation Shell). FIS diagnoses probable cause of failure of avionics
in an interactive troubleshooting session and assigns blame by using probabilistic reasoning.
InterFIS provides the FIS user with a non-tool-specific interface and permits linguistic complexity
and paraphrasability -n natural language interactions. InterFIS, driven by the Proteus chart parser,
maps syntactic-semantic representations into domain predicates that are then mapped into represen-
tations corresponding to the various FIS commands. FIS responds in either a graphic or text mode.

We report how by using natural English commands and queries as input to the expert system
shell we have extended the mnemonic commands of the menu interface to FIS. We also describe how
we have extended some of the capabilities of the expert system without changing any of its
functionality. We discuss our research approaches and conclude with implications and questions
raised by our work.

14. SUBJECT TERMS 15. NUMBER OF PAGES

25
Natural language processing 16. PRICE CODE

Computer interfacing

17. SECURITY CLASSIFICATION IB. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIEI) UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-0' 280 5500 Standard Form 298 (Rev 2-89)
nn , j c , 4N%. A Si cd /139'8

CONTENTS

INTRODU CTION ... 1

F IS 1

OVERVIEW OF FIS ... 3

SYNTACTIC ANALYSIS .. 6

SELECTIO N ... 11

The PFQAS Component .. 11

The COIN Component ... 12

APPROACHES, IMPLICATIONS, AND QUESTIONS 15

G ram m ar .. 15

Interfacing ... 16

Representation .. 18

FUTURE W ORK ... 18

CO N CLU SIO N ... 20

ACKNOW LEDGMENTS ... 20

REFERENCES A o..ion For 20
NTIS GRA&I

DTIC TAB
Unannounced 5
Justification

By
Distribution/
Availability Codes

'Avall and/or

Dist Special

A.)

InterFIS
A NATURAL LANGUAGE INTERFACE TO THE FAULT ISOLATION

SHELL

INTRODUCTION

InterFIS is a natural language interface used to interface with an electronics troubleshooting
expert system that is part of an expert system development tool called the Fault Isolation Shell (FIS).
In this report we present a brief overview of one module of the expert system and then discuss the
natural language interface with this system. Our focus here is on how InterFIS maps natural language
input into an appropriate representation for the expert system. We also discuss our research
approaches, their implications, and the questions raised by our work. We conclude with a brief
discussion of what work is required in the future.

FIS

FIS runs on SUN workstations under a UNIX environment and is written in Lucid Common
Lisp. The domain of FIS is electronics troubleshooting of analog equipment [1]. The principal
functions of FIS are

" to aid the knowledge engineer in producing concise descriptions of electronic equipment
in a particular domain;

" to compute the probability that a particular fault hypothesis is correct after one or more
tests have been performed on a particular piece of electronic equipment;

" to recommend the next best test to make based on the information supplied by a diagnos-
tician during a testing session.

The first function of FIS is part of the knowledge acquisition component of the expert
system, and the other two functions are part of the troubleshooting module. Here we are not
concerned with the knowledge acquisition module. A technician who wishes to performcertain
electronic troubleshooting tests on a particular piece of electronic equipment accesses the trou-
bleshooting module through one of three interfaces (Fig. 1).

Manuscript approved August 28, 1990.

PERZANOWSKI AND POTTER

Fcowledge Acquisition Module

~Ergonomic

Troubleshooting Module Interface

ccn wtt nta~l.ln g~i. . T....hn...n InterIn wi
::. .:..: :: :..:...: :: :

trouleshotig. oduleai of FIS nd iu interfaces with the expert system uh memoomad

arranged in a hierarchical series, hereafter referred to as the standard interface [2]. The technician
can also access the same hierarchical sequence of commands through a mouse-driven interface,
hereafter referred to as the ergonomic interface' [3]. We have added the natural language interface.
Since we have limited our research to interactions with the troubleshooting module, the natural
language interactions that we are concerned with here do not encompass the kinds of interactions that
knowledge engineers would experience. Specifically, the natural language interactions are those of
a technician interacting with the expert system to determine unit fault or optimal test diagnostics.

Interactions with any mnemonic series of commands in a menu format can be obscure at
times, and a naive user can frequently be intimidated by the menus and their cryptic commands.
Natural language communication is, on the other hand, by definition natural. The user seldom needs
additional training to interact with a system that has a natural language interface. Natural language
interfaces, however, are not designed to replace existing interfaces. Multimodal interaction is
desirable, and a natural language interface should be only one of several means of interaction with
expert systems. Therefore, we envision InterFIS not only to encompass natural language interaction
but also to complement the standard and ergonomic interfaces of this expert system.

At the present time, InterFIS is keyboard driven. Thus, the diagnostician must type in all the
interactions as a sequence of words followed by a period or a question mark, just like normal typing

'In this study, no comparisons are made between either the standard interface or the natural language interface (InterFIS) and the
ergonomic interface. The latter interface is no longer supported at this research site.

..... ... 2

NRL REPORT 9299

at a keyboard. We assume here that the natural language interface, although faster to learn than the
other interfaces, is slower because it is a keyboard entry device. It takes longer to type some of the

commands than to type in a two-character mnemonic command or to click on an icon. Performance
tests would undoubtedly corroborate this belief.

Regardless of which interface is used, interactions with all three interfaces change the unit
under test (UUT) as it is displayed on the monitor. Fig. 2 is a schematic drawing that shows what
a typical monitor looks like when a diagnostician interacts with FIS through the natural language
interface, InterFIS.

The bottom SUN window in Fig. 2 is the interactive window that communicates with the
expert system. The user initializes the system from this window and interactively loads a unit for

testing. A colorize, graphic representation of the topology of the unit appears in the SUN window
at the upperpart of the monitor. At various stages during the troubleshooting process, different
modules (the darkened boxes in the upper window) and test points of the UUT (the shaded triangles)
are suspected as possible places to be tested for fault. On the display monitor, the representations
of the various suspected modules change color according to the degree of their probability [2] of
causing the fault. Various numerical fault probabilities are also displayed in the darkened boxes or
the modules in this upper graphics window.

In the lower interactive window, the user reque,s or commands FIS to perform the diagnostic
tests or to display other lists of information, which also appear in the interactive window. In Fig. 2,

the user has requested through InterFIS that the system display or show the fault probabilities of the
last failed test. The system responded with a list of fault probabilities and certification rates. The
user then requested that the system test the frequency at one of the terminal or test points, namely
MFE'1.

The other two interfaces to FIS display their results similarly.

OVERVIEW OF IN-rERFIS

To produce representations suitable for the expert system to process, the natural language
interface processes the natural language input in several distinct steps. InterFIS first determines the

syntactic constituents of the input and normalizes grammatical English sentences in the syntactic
component. The input sentence or string is then regularized into canonical forms in an operator/
operand notation. These representations are then checked against domain-specific verb models by
using predefined noun classes for the corresponding arguments and transforming them into predi-

cate-argument notation. This latter representation then undergoes semantic interpretation in the
Command-Oriented INterpreter (COIN) component. This component maps predicate-argument
forms to FIS-commands that the expert system can then process (Fig. 3).

3

PERZANOWSKI AND PUTTrER

Fault probbiltso(F)atid Setiiatoe rtslC

0.0201 R l 00FILTE

-00010 0.0 M-AT
0.013 6 0.0 -0.30

0. 01 46 0.00.02CM
0.01-6000.F-0

BIcTnueB tpeAENRK

A CF.2-HIP FISitrciedansi eso ihItr

FILTE4

NRL REPORT 9299

Sentence

. & ... CT.. .. ON..AR..

Regularization

.PPQAS~~N GUIOUiCLSE

Predicate-Argument Form

®r~

FIS command

EX.U ..YS.....
.... .

Fig. 3 -Overview of input processing in InterFIS

5

PERZANOWSKI AND PO=TER

We discuss in this report the natural language processing of the input to the expert system:
how InterFIS parses the input in its syntactic component, normalizes the output of the syntactic
component; and then translates the output into a predicate-argument form that is matched with an
appropriate FIS-command in the expert system by COIN.

In this report, we limit ourselves to approximately 30 FIS-commands taken from the standard
interface. These commands comprise the topmost level and several items from a sublevel of the
expert system. We used menu items such as SHOW-HISTORY, SHOW-ACTIVE-LIST, and SIM-
FAULT (SIMULATE-FAULT). Time did not permit us to look at the entire set of FIS-comrnands.
Furthermore, handling some of these additional FIS-commands would have entailed the incorpora-
tion of a discourse component that is not a part of this study. By using the 30 FIS-commands
mentioned above, we formulated a set of English sentences and their possible paraphrases. We tried
to translate each FIS-command into at least three or four possible paraphrases that were syntactically
general enough to allow for rewording, elimination or incorporation of syntactic elements, rephras-
ing through nominal compounding, and the like. For example, the FIS-command SHOW-PROBS
(SHOW-PROBABILITIES) has at least seven paraphrases, as shown in "(1) Data".

(1) - Data

" Show the current fault probabilities of the unit.
" Show the fault probabilities of the unit's modules.
" Show the fault probabilities of the unit modules.
" Show the fault probabilities on the console.
" Show the probabilities list.
" Show the list of probabilities.

" Show the probabilities.

We also included the synonyms for the verbs in this domain. Possible synonyms for SHOW are
DISPLAY, LIST, and GIVE, to name but a few. All of these verbs are mapped into the same domain
predicate DISPLAY.

With a core set of paraphrases consisting of approximately 120 sentences, we developed a
grammar and domain model. We assume that by using this grammar and domain model, more
paraphrases can be mapped into appropriate representations. As a result, the total number of
interpretable sentences is much larger, it is dependent solely upon the completeness of our linguistic
analysis.

SYNTACTIC ANALYSIS

Sentences are scanned by using a word dictionary or lexicon that consists of approximately
425 words. The sentences are grammatically analyzed by the PROTEUS parser, a context-free chart

6

NRL REPORT 9299

parser [4]. The syntactic parser uses two inputs: an input string that contains lexical information for
each word in the sentence, and a grammar written in PROTEUS Restriction Language, which is a
variant of Backus-Naur Form (BNF). The lexical scanning in PROTEUS ensures that all lexical
items of the input string are spelled correctly and that each of them has a dictionary entry. The lexicon
contains entries like that shown in "(2) Lexical Representation". Each entry identifies the lexical
category of a word and specifies some subcategorization features that may be either syntactic or
semantic.

(2) - Lexical Representation

(word FIS (N (NONHUMAN PROPER Xn (FIS SINGULAR))))

In "(2) Lexical Representation", for example, the word FIS is a Noun (N), and its syntactic-semantic
features are that it is a NONHUMAN and PROPER noun. The remainder of the list, the Xn element,
is a base form or lexical regularization of the noun. When the lexical item FIS is entered into the
regularization, the input appears in the list structures in its regularized, or Xn, form as FIS
SINGULAR.

Each syntactic rule has three parts: the syntactic category, its syntactic structure and a
syntactic regularization. In "(3) BNF Definition for Imperatives", we use the BNF to expand English
imperative sentences into syntactic categories and a syntactic regularization.

(3) - BNF Definition for Imperatives

<IMPERATIVE> ::= <SA> <IVERB> <N-NOT> <SA>
<OBJECT> <SA>:
{(tell IVERB you !OBJECT !SA* !N-NOT)}.

As the structural description for IMPERATIVEs on the right-hand side of the rule is met, the various
constituents, such as <SA> or <Sentence Adjunct>, <IVERB> or <Imperative Form of the VERB>,
are further expanded until each word of the input sentence matches each of the constituents of the
major syntactic category IMPERATIVE. PROTEUS then regularizes [5] the syntactic parse into a
list structure, indicated in "(3) BNF Definition for Imperatives" as the list enclosed in brackets. As
"(3) BNF Definition for Imperatives" shows, all imperative verbs (I VERB) are prefixed by the per-
formative operator TELL, followed by the lexical item (IVERB) and the understood subject YOU
of English imperatives. The remainder of the regularization for imperatives contains the OBJECT
string and Sentence Adjuncts such as adverbial modifiers, which are similarly regularized by
following rules'.

'Iterative occurrences of a node are indicated by *. and OBJECT and NOT-strings are spliced (as indicated by the !-notation) into the
remainder of the list.

7

PERZANOWSKI AND P0TTER

A sub-component of the grammar is the Restriction Component, which syntactically
constrains and limits the number of acceptable parses. For example, in "(4) Restriction Language
Definition", the restriction WIO only permits HUMAN objects of verbs that are subcategorized' for
NN in their OBJLISTs2 , such as SHOW and GIVE.

(4) - Restriction Language Definition

WIO = IN NN:
IF FIRST-ELEMENT IS NOT EMPTY
THEN CORE OF FIRST-ELEMENT HAS ATITRIBUTE NHUMAN.

Thus, SHOW (ME) THE LIST and GIVE (ME) THE PROBABILITIES are grammatical, but
SHOW THE HISTORY LIST is not, where HISTORY is parsed as the indirect object; i.e., as in the
ungrammatical sentence SHOW (TO) THE HISTORY (THE) LIST.

Both the BNFs and the Restriction Component are a direct descendent of the Linguistic String
Project grammar [6], but they have been adapted and augmented for the FIS domain by using
procedures outlined in Ref. 7 for developing sublanguage grammars.

The final output of the syntactic processing is a normalization as described in "(5) Sample
Sentence With a Sample Representation" of the input sentence in an operator/operand notation,
similar to the "semantic" representations found in a Generalized Phrase-Structure Grammar [8,9].

(5) - Sample Sentence With a Sample Representation

Show the fault probabilities of the last failed test. =

(SHOW (you) (the N2 probability plural
(AN-STG ((fault singular)))
(OF (the #N6

test singular
(AN-STG
((AN-STG (last)) fail))))))

(me))

'Verb subcategorization identifies the restr,.aons on the types of syntactic objects that a verb can take. These restrictions are
characterized in the OBJLIST for each verb in the lexicon.

'The OBJLIST, orOBJect LIST of a verb, is a list of the syntactic complements to the verb. In other words, a verb like SHOW can
have in its OBJIST NSTGO (Nou STring Objects) (ia), THATS (that + Sentence), (ib), or even NULLOBJ (NULL or no OBJect)
(ic), to name but a few.

(i) (a) Th, test showed the results of the experiment.
(b) The test showed that the results were positive.
(c) His embarrassment showed.

8

NRL REPORT 9299

Next, strings are regularized so that the predicates of those strings precede their grammatical
arguments. For example, English declarative sentences do not have their verbs first, as in THE
SYSTEM SHOWED THE LIST, but they do regularize to something like "(6) A Regularization".

(6) - A Regularization

(ASSERT (PAST SHOW (SUBJECT THE SYSTEM)
(OBJECT THE LIST))

Some interrogatives, such as WHAT IS THE CURRENT LIST OF TESTS? have a different
syntactic shape. However, this interrogative will regularize to something like what is shown in "(7)
A Regularization".

(7) - A Regularization

(ASKWH (WHICH THING NIL)
(PRESENT BE

(SUBJECT VAR)
(OBJECT THE LIST SINGULAR

(AN-STG (CURRENT))
(OF (NULL-DET TEST PLURAL)))))

Except for the initial elements in "(6) A Regularization" and in "(7) A Regularization", namely
ASSERT in "(6) A Regularization" and ASKWH (WHICH THING NIL) in "(7) A Regularization"
respectively, the remainder of the regularizations are structurally similar. Some initial performative
and tense information precede the predicates. ASSERT in "(6) A Regularization" is a place holder
for the performative information of declarative information, while ASKWH in "(7) A
Regularization" holds the performative information. The predicate is, in turn, followed by its logical
arguments, namely S BJECT and OBJECT, if one exists. These representations or regularizations
capture the similar predicate-argument structure of the two syntactically different input strings. Such
regularized representations of the input facilitate further processing, since the inherent information
of a sentence, regardless of sentence type, is presented in the same format.

This representation is checked against certain domain-specific information. The resulting
predicate-argument form is then analyzed by an application-specific interpreter that maps the
syntactic-semantic representation into an appropriate representation or FIS-command for the expert
system.

9

PERZANOWSKI AND POITER

A slightly different procedure is used to process conjoined constructions or sentences. When
a conjoined construction is found in the input sentence, the PROTEUS parser modifies the input
before passing it on to the selectional interpreter, PFQAS (Fig. 3). In particular, conjoined input is
broken into two or more individual structures. Conjoined Imperatives, such as those in "(8)
Decomposition of Conjoined Imperatives", are simply split into separate but complete commands.

(8) - Decomposition of Conjoined Imperatives

Show the history and make a test.
(and (show the history) (make a test))

When an NP object involves conjunction, as in "(9) Decomposition of Conjoined Objects", certain
linguistic items must be duplicated before processing the sentence.

(9) - Decompsition of Conjoined Objects

Make a test and a best test.
(and (make a test) (make a best test))

This duplication of elements is done before semantic processing during the syntactic analysis of the
input.

Note that the conjunction functions act recursively, so that any amount of conjoining is
possible and conjunction at different levels of embedding will be accounted for. Thus, although the
expert system requires that the input be a single FIS-command, if the input is an extremely complex
English sentence, such as "(10) Sentence Exhibiting Various Conjoined Elements", InterFIS will
analyze the input into its constituent commands and present them serially to the expert system.

(10) - Sentence Exhibiting Various Conjoined Elements

Load and draw the unit on the screen and show the amibiguity and history lists.

Each of the separate comma& Is in "(10) Sentence Exhibiting Various Conjoined Elements" is sent
to the selection component, interpreted individually, and passed separately to the expert system.

10

NRL REPORT 9299

SELECTION

The PFQAS Component

The PROTEUS-derived syntactic parse of the input sentence, or normalization, is passed to
the semantic interpreter, PFQAS, which is an adaptation of the selection component of the Question-
Answering System [4]. PFQAS tests the semantic integrity of the parse, prunes the number of
possible parses and determines that the appropriate verb models with corresponding noun classes
exist. PFQAS maps the parse to what we call a predicate-argument form. A predicate-argument form
is like a predicate-calculus iepresentation of a sentence to which subject and object labels have been
appropriately inserted.

Semantic selection is coded in PFQAS through verb models and noun classes. The verb
LEAVE might be defined in the PFQAS domain-specific verb models as in "(11) Verb Model For
The Verb Leave".

(11) - Verb Model For The Verb Leave

(leave (subject you) (object nfisnoun) (to nsystemnoun nil optional))

An input sentence containing LEAVE as its main verb is deenied semantically acceptable by PFQAS
if it fits the structure dictated by this model. In other words, the input sentence must contain an object
argument recognized as a member of the noun class NFISNOUN and a TO-argument of the class
NSYSTEMNOUN. OPTIONAL in "(11) Verb Model For The Verb Leave" also indicates that the
TO-argument is optional, with NIL being required as the place-holder for the processing of the
optional operand. Noun classes are defined as sets in PFQAS "(12) Sample Noun Classes And
Members Of Their Sets".

(12)- Sample Noun Classes And Members Of Their Sets

(nfisnoun (fis system environment))
(nsystemnoun (unix lisp system))

As an example of how subcategorization in the lexicon and selection in the verb models operates,
consider "(13) Sample Sentence".

(13) - Sample Sentence

Exit fis to unix.

11

PERZANOWSKI AND POTTER

In the verb models, EXIT is identified as a verb of the type LEAVE; FIS is an NFISNOUN and UNIX
is an NSYSTEMNOUN. Thus, "(13) Sample Sentence" is an acceptable utterance in this domain,
based on the verb model that it maps to, as seen in "(11) Verb Model For The Verb Leave". Since
the TO-argument in "(11) Verb Model ForThe Verb Leave" is optional, a paraphrase of"(13) Sample
Sentence" EXIT FIS, will also pass selection.

Note that we have written PFQAS to allow complex noun phrases, such as UNIX SYSTEM
in "(14) Sample Sentence".

(14) -- Sample Sentence

Exit the current environment to the unix system.

"(14) Sample Sentence" is a semantically valid sentence, just as "(13) Sample Sentence" is.

Wh-questions are mapped somewhat differently in InterFIS. InterFIS maps wh-questions to
imperatives, like the one in "(15) Example of Mapping".

(15) - Example of Mapping

What tests have been performed?
::= Show the performed tests.

In PFQAS, we have assumed that wh-questions beginning with the interrogative pronouns, such as
WHO, WHAT, and WHICH' map to the performative DO and the verb SHOW. By allowing this
mapping, an interrogative sentence like the one in "(15) Example of Mapping" will eventually map
to an appropriate FIS-command. Our assumption is that the underlying intent of "(15) Example of
Mapping" is for the expert system to perform some action. Thus, mapping an interrogative to a
performative verb is justified.

The COIN Component

Having achieved a valid predicate-argument form of the input sentence, control is then passed
to a series of functions that together are called COIN. The role of this module is to map the predicate-
argument form to its real-world meaning or representation. In expert systems, real-world meanings
are function calls that correspond to commands that users input to the environment either through
mnemonics, menus, or, in this case, natural language.

We have not looked at WHERE, HOW, and WHY for principled reasons discussed later in this report.

12

NRL REPORT 9299

COIN is made up of three major components: the semantic network; the net-traversal
component; and the move-stack building component. The semantic network of domain-relevant
lexical items contains all the iniformation on expert system function calls. Functions are picked from
this network by the net-traversal component that follows a list of commands for movement through
the network. This list of commands is formed by the move-stack building component.

COIN's semantic network is the only application-specific element of InterFIS. In brief, the
network is a representation of the expert system's knowledge about objects (nouns), their attributes
(adjectives and complements), and commands (verbs) associated with those objects. In other words,
encoded in the network are the possible relationships among relevant nouns and adjectives and their
corresponding interactions with verbs. At the core of the network lie the expert system function calls.
All natural language is ultimately translated to these function calls.

The main unit in the network is the lexical node. Any significant adjective or noun in the
expert system is represented by a node. Nodes are connected to each other through paths that
correspond to different means of nominal modification. For example, there are adjectival paths that
denote adjectival modification and relational paths that denote of-complementation (Fig. 4).

abgiyad adj

"active list"
"ambiguity list"

ad is adj

probailityrel hstr

r "history list"
"probability list"

"list of tests"

Fig. 4 - Simplified example from InterFIS semantic network

13

PERZANOWSKI AND POTTER

Fig. 4 shows that nominals, such as PROBABILITY LIST and LIST OF TESTS, are also accounted
for by this net-traversal function.

Within each node information exists that maps node-relevant verbs to expert system function
calls. Fig. 5 shows the example of the lexical node TEST that contains information that the verb
MAKE refers to in order to call the function CMD-MAKE-TEST.

*make cmd-make-test
*redo cmd-repeat-command

*display cmd-shov-active-list

Fig. 5 - Partial information for Test node

In determining the expert system function call relevant to the natural language input, the basic
strategy of the COIN net-traversal component is to select the verb-relevant function call in the last
lexical node encountered. Traversal of the network begins at the lexical node corresponding to the
head or main noun of the syntactic object, such as LIST in "(16) Sample Sentence", and proceeds
according to the list of moves stacked for traversal through the network by COIN's move-stack
building component.

(16) - Sample Sentence

Show me the history list.

The move-stack building functions operate on the PFQAS predicate-argument form, decomposing
the PFQAS structure into ordered units of linguistic modifiers. As traversal through the semantic
network progresses, COIN picks up all relevant function calls encountered. When traversal of the
network is complete, the final function call collected is executed.

14

NRL REPORT 9299

Several circumstances may alter the basic traversal strategy. One important case is
quantification. When the move-stack building functions of COIN encounter a universal quantifier
in the input sentence, a list of move-commands is developed. Each set of commands in this list
corresponds to the move-command relevant to a particular instantiation of the quantified NP. In "(17)
Sample of Quantification", four move-stacks will be created, because four kinds of lists are in the
FIS domain.

(17) - Sample of Quantification

Show all the lists. ::=
• Show the active list.
* Show the history list.
" Show the probabilities list.
" Show the ambiguity list.

Another case that can alter the basic net-traversal strategy is the inclusion of parameters or
variables in the input sentence. Some expert system function calls require one or more arguments
for proper execution. Thus, nodes that represent words potentially used as parameters are flagged
as special. During traversal of the network, any such nodes encountered are noted and are used as
arguments in the execution of the final function call. For example, in "(18) Sample Sentence", FRE-
QUENCY and G-IF are parameters relevant to the MAKE-TEST function hierarchy.

(18) - Sample Sentence

Make a frequency test at g-if .

As such they will be passed as arguments to a function called by MAKE-TEST.

APPROACHES, IMPLICATIONS AND QUESTIONS

Grammar

Although InterFIS currently can process imperative sentences in English in the FIS domain,
the present grammar does not handle certain types of interrogative and declarative sentences. These
limitations of the natural language system correspond to the limitations of the expert system. InterFIS
does grammatically process the commands for which there is a corresponding FIS function at the
highest level of interaction.

Interrogative questions, such as WHAT IS THE HISTORY LIST? and WHICH UNIT IS
LOADED? will parse and an appropriate FIS-command will be returned. However, other interroga-
tives, for example HOW, WHO(M), WHERE, and WHY, do not have corresponding interpretations
or functions and are therefore not in the grammar.

15

PERZANOWSKI AND POTTER

Furthermore, we did not pursue yes/no type questions such as WAS A TEST RUN? Yes/
no questions require yes/no answers. Although the information may be available in the FIS domain,
FIS functions do not exist to access this ir.."ormation.

Finally, we did not have the time to incorporate declarative structures, such as I WOULD
LIKE TO SEE THE HISTORY LIST. However, as Ken Wauchope (personal communication)
suggested, such declaratives could be interpreted as DO performatives, thus mapping into the
domain-predicate SHOW.

Interfacing

We decided not to modify the existing expert system code or add to it but only to use available
system functions and variables. This preserves the integrity of the expert system. However, within
this framework we took advantage of the productivity of natural language, wherever possible.
Although our underlying philosophy was not to modify any existing FIS code or add to it, the natural
language interface did extend some of the capabilities of the expert system.

First, natural language has the capability of paraphrasing locutions. When InterFIS was
interfaced to the expert system, FIS acquired this functionality as well. For example, the FIS
mnemonic function SH in the menu-driven interface corresponds to the FIS command SHOW-
HISTORY. The natural language interface, on the other hand, maps any equivalent paraphrase -

SHOW THE HISTORY LIST; WHAT TESTS CAN BE REMADE?; WHAT IS THE LIST OF
TESTS RUN?; and WHAT TESTS CAN YOU REMAKE?, etc. - to SHOW-HISTORY.

Similarly, the natural language capabilities of conjunction and quantification are passed to
the expert system. For example, sentences like MAKE A TEST AND BEST TEST and MAKE A
TEST AT EVERY TERMINAL can be processed regardless of how the expert system is organized.
The latter sentence also permits the user to input a request once, rather than having to type a series
of mnemonic commands.

By using the natural language interface, it becomes possible to access the expert system in
ways not initially available. In other words, through natural language, a user can request actions and
pieces of information that the expert system is capable of supplying, whether a specific mnemonic
command existed to correspond to that request or not. For example, FIS has a functio, ENHANCED-
AMB-SET that is accessed only through another FIS function and is not directly available to the user
of the mnemonic interface. The user of InterFIS, however, can type in SHOW ME THE
ENHANCED AMBIGUITY SET at any time, and the expert system will respond by displaying the
enhanced ambiguity set on the screen.

Likewise, this ability to call any function in the expert system code allows the user to
compress information that normally requires several interactions into one input sentence. For
example, in the mnemonic interface the command MT corresponds to the function MAKE-TEST.

16

NRL REPORT 9299

This function requests information on the location of the test and in turn calls other functions
requesting additional information. With natural language the user may type in the command MAKE
A FREQUENCY TEST AT G-IF, thereby supplying some of the needed information ahead of time
and skipping to a function lower in the MAKE-TEST hierarchy.

In addition to accessing functions directly, we discovered that the language interface permits
the users to access variable values of the system directly. If the user wishes to know WHAT UNIT
IS LOADED?, InterFIS returns the value of the corresponding variable, even though no mnemonic
command or FIS function exist to access that information. This consequence of similarities between
Lisp's treatment of variables and InterFIS's treatment of functions was most desirable.

Extending the capabilities of an expert system as discussed above raises the obvious
questions of how much of the expert system should be accessed that wasn't originally accessed and
how much the existing system should be modified. All domain-relevant information is stored
somewhere in the expert system. Natural language interfaces supply the user with a virtually
unrestricted medium for requesting this information. Where is the line drawn?

We have answered this question by not extending the natural language capabilities of the
interface beyond those commands the expert system was already capable of processing. Thus, yes/
no questions and certain types of interrogatives are not processed, as noted above. On the other hand,
we permitted the natural language interface to access information if it was readily accessible from
the expert-system knowledge base, even in the absence of a specific expert-system function. For
example, a user can now ask the expert system what unit is being tested. We did not believe that we
were altering the system's functionality by so doing.

Researchers involved in natural language processing and interfacing to expert systems will
be confronted with the problem of modifying or adding to the expert-system code. We believe that
the writer of the natural language interface should preserve the integrity of the system and should not
alter the code of the system to which he or she is interfacing. However, the question of enhancements
to the expert system will arise. The authors of the expert system may not have incorporated some
functior that accesses information that is easily requested through the richness of natural language.
InterFIS enhances the interface whenever a natural language sentence has a corresponding represen-
tation in the expert system, and the expert system does not have a function to present that information.
This is not in any way an alteration of the expert system code. It simply allows the system to present
what is already represented in the expert system's knowledge base.

We also capitalized on the natural language interface's ability to stack commands when
information is compressed into one input sentence "(18) Sample Sentence". Such stacking simply
permits the user of the natural language interface to step through the hierarchy of FIS-commands in
a more natural manner. These additions, therefore, do not alter the expert system's functionality but
merely extend the system's capabilities by incorporating natural language communication.

17

PERZANOWSKI AND POTTER

Representation

Throughout this report we have referred to COIN, the Command-Oriented INterpreter. The
name of this module introduces one final issue that must be discussed. In surveying natural language
interfaces to database management and expert systems [10 - 121, we note that there are essentially
two types of system organization. Generally, database search systems are organized in a function/
argument schema [13). Verbs or actions in interfaces to these systems correspond almost directly
to function calls, while data objects correspond to arguments of those functions. Systems so
organized permit a one-to-one mapping between natural language verbs and objects to database
functions and arguments.

Many other expert systems are organized around production rules [14]. FIS, a variant of the
production rule system, was organized around "whole" predicates, making it similar to frame-based
representation expert systems [14]. To illustrate, in FIS, the verb SHOW and the object noun phrase
ACTIVE LIST do not correspond directly to individual functions and data objects. The predicate
SHOW THE ACTIVE LIST, however, does directly correspond to the function SHOW-ACTIVE-
LIST. Because of this, our interface had to map natural language input not to actions and objects that
correspond to predicates and their logical arguments, but to specific FIS function calls or commands
(thus the name: COIN or Command-Oriented INterpreter).

FUTURE WORK

We have not decided which expert-system organization is preferable for incorporation into
a natural language interface that uses predicate-argument representations. Nor have we decded how
intrinsic the differences are to the database/expert-system paradigm in general. In the future, we plan
to consider alternate methods of meaning representation that may make any assumed distinctions
debatable. Such representation would involve mapping all language input to a metalanguage
(mentalese or the language of thought). System-function calls and corresponding arguments would
alro be represented in this language, and an alternative mapping strategy would be employed.

In the future we will incorporate a discourse component to the interface and investigate a user
model for this expert system. Other elements not handled by sentence grammars, such as pronominal
reference across sentences, need to be included to process all the information. These additions would
greatly expand the capability of the system. In a totally natural language interchange, communica-
tion is not only a function of syntactic and semantic sentential processing. For example, in the
following discourse "(19) Sample Discourse", sentential processing cannot resolve the pronoun ref-
erence across sentences.

18

NRL REPORT 9299

(19) - Sample Discourse

user: Show the history list.
expert system: [an appropriate list is displayed on the monitor]
user: Show it again.

Currently, InterFIS cannot process the discourse in "(19) Sample Discourse" because it does not have
a discourse component that can resolve pronominal reference. Future work, therefore, should
incorporate such a component.

Interaction with an expert system can be greatly facilitated by multimodal interaction as well
as by incorporating speech input. Our research with InterFIS has been in adding natural language
capabilities to an expert system that already had a mnemonic menu-driven interface and a mouse-
oriented interface. InterFIS is currently limited; the input must be typed at a keyboard. Therefore,
the user of the interface is manually limited in doing other tasks. Voice input will free the hands of
the user and let the user interact more efficiently with the system and with the work environment in
general.

Furthermore, keyboard entry requires more time, since most people have different typing
skills. A voice activated system could reduce the additional time required for input. Internal
processing of the speech signal may, of course, be time consuming, but we assume that research in
this technology will address that issue separately. It is simply our desire to provide a voice activated
system that provides greater flexibility for the user in enhanced multimodal interactions with the
expert system.

Some additional linguistic coverage is also required in future work with InterFIS. As noted
earlier, yes/no questions are currently not processed or interpreted in InterFIS. Future work should
address these constructions and process them. Relative clauses, such as WHICH WERE RUN in
"(20) Sample Sentence", are processed in the grammar, and the PFQAS interpreter maps the
embedded verb into an adjectival modifier.

(20) - Sample Sentence

Show the tests that were run.

Since a network connection is in COIN between TESTS z nd RUN, "(20) Sample Sentence" is
interpreted. However, this avoids the linguistic issue of whether or not all relative constructions
should be interpreted in this way. Although this method works in our limited domain, it is not obvious
that it will be applicable in other domains. Development of a more robust, transportable system will
force us to reconsider our strategy. As part of this effort, we will incorporate a new selectional
interpreter [151 as one of the modules in InterFIS.

19

PERZANOWSKI LND POTER

CONCLUSION

In this report, we have described the function of InterFIS, a natural language interface to an
expert system, the Fault Isolation Shell. We have described how natural language input to the expert
system is first parsed syntactically to obtain an intermediate, domain-independent representation.
This representation is then mapped to verb-models within the specific domain of electronics
troubleshooting, and the representation is matched to the existing commands within that expert
system. As a result, typed input to InterFIS results in a series of electronic tests in FIS. We have
discussed several research issues about natural language processing and interfacing to an expert
system, as for example altering a system's functionality. We have explained what motivated our
grammatical coverage. Finally, we have outlined our future research goals for InterFIS, mainly how
we would extend the grammatical coverage by adding speech to the interface and by incorporating
a different selectional interpreter.

ACKNOWLEDGMENTS

This research was supported by the Office of the Chief of Naval Research under Natural
Language Research project N00014-90-WX4B738. The authors extend their thanks to Ken
Wauchope for providing the PROTEUS Workstation Interface to adapt and develop grammars. We
also thank William Spears for setting up and explaining the Fault Isolation Shell to us, Stephanie
Everett, Elaine Marsh, Astrid Schmidt-Nielson, and Ken Wauchope for their critical comments in
the preparation of this report. The authors, however, assume all responsibility for its contents.

REFERENCES

1. F. J. Pipitone, K. Dejong, W. Spears, and M. Marrone, "The FIS Electronics Troubleshooting
Project," in Expert Systems Applications to Telecommunications, J. Liebowitz, ed. (Wiley and
Sons, New York, 1988), pp. 73-101.

2. F.J. Pipitone, K.A. Dejong, and W.M. Spears, "An Artificial Intelligence Approach to Analog
Systems Diagnosis," NRL Report 9219, 1989.

3. R. Schoeffel, "FIS Ergonomic Interface Users Guide," manual, Naval Research Laboratory,
Washington, D.C., 1988.

4. R. Grishman, "PROTEUS Parser Reference Manual," PROTEUS Project Memorandum #4,
New York University, New York, 1986.

5. J.M. Gawron, "Syntactic Regularization in PROTEUS," PROTEUS Project Memorandum #5,
New York University, New York, 1986.

20

NRL REPORT 9299

6. N. Sager, Natural Language Information Processing: A Computer Grammar of English and Its
Applications (Addison-Wesley, Reading, MA, 1981).

7. D. Perzanowski and E. Marsh, "Preparing a Sublanguage Grammar," NRL Report (forthcoming).

8. G. Gazdar, "Phrase Structure Grammars," in The Nature of Syntactic Representation, P. Jacobson
and G.K. Pullum, eds. (D. Reidel, New York, 1983), pp. 131-186.

9. G. Gazdar and G. Pullum, "Generalized Phrase Structure Grammar: A Theoretical Synopsis,"
Indiana University Linguistics Club, Bloomington, IN, 1982.

10. W. C. Ogden, "Using Natural Language Interfaces," in Handbook of Human-Computer
Interaction, M. Helander, ed. (North-Holland, New York, 1988), Ch. 13, pp. 281-299.

11. R. J. H. Scha, "Natural Language Interface Systems," in Handbook of Human-Computer
Interaction, M. Helander, ed. (North-Holland, New York, 1988), Ch. 44, pp. 941-956.

12. M. H. Chignell and P. A. Hancock, "Intelligent Interface Design," in Handbook of Human-
Computer Interaction, M. Helander, ed. (North-Holland, New York, 1988), Ch. 46, pp. 969-995.

13. G. Widerhold, Database Design (McGraw-Hill, New York, 1977).

14. D.A. Waterman, A Guide to Expert Systems (Addison-Wesley, Reading, MA, 1986).

15. K.Wauchope, "A Tandem Semantic Interpreter for Incremental Parse Selection," NRL Report
9288, September 28, 1990.

21

